Aarhus University Seal / Aarhus Universitets segl



Pseudo-coloured electron micrograph depicting nanoparticles circulating in the bloodstream along with red blood cells (red) and those sequestered in endothelial cells lining the blood vessel (yellow). (Figure: Yuya Hayashi).
Fluorescently labelled 70 nm SiO2 nanoparticles were injected into the bloodstream of 3 days old transgenic zebrafish embryos and live-imaged at 3 min after the injection. The insets show schematics for the two conditions tested: control nanoparticles with a corona of endogenous proteins (orange) and nanoparticles with a pre-formed corona of fetal bovine serum (FBS) proteins (blue) and additional endogenous proteins. Control nanoparticles are rapidly captured by macrophages, while the nanoparticles with a non-self biological identity are effectively sequestered by scavenger endothelial cells. (Image: Yuya Hayashi. Adapted from Mohammad-Beigi et al. (2020) ACS Nano. Copyright 2020 American Chemical Society)
Hossein Mohammad-Beigi from iNANO (left) and Yuya Hayashi from MBG work together to tackle long-standing questions in bionanoscience using a zebrafish model (Photo: Hoda Eskandari)

2020.09.30 | Research

Zebrafish embryos help prove what happens to nanoparticles in the blood

What happens to the nanoparticles when they are injected into the bloodstream, for example, to destroy solid tumours? With new results published in ACS Nano, researchers from Aarhus University are now ready to tackle such a challenging question using zebrafish embryos as a new study model in nanomedicine and nanotoxicology.

A Danish research team shows in Nature Communications how they have developed a new approach for faster, though more in-depth studies of corona proteins, which affect the functional role of nanoparticles. The image schematizes a nanoparticle covered by corona proteins. (Image: <em>Nature Com.</em> 11, Article no. 4535 (2020))

2020.09.25 | Research

AU researchers contribute to understanding corona proteins on nanoparticles

The properties of nanoparticles are widely acknowledged and they are an important tool in pharmaceutical applications, among others. However, there is a need for deeper understanding of the protein layers accumulating on their surface, as these protein layers affect the functional role of the nanoparticles. AU researchers have developed a method…

A Danish research team describes in an article in <em>Nature Communications</em> how a well-described circular RNA molecule, which was thought to be carcinogenic, is not found in the cancer cells after all.

2020.09.21 | Research

Well-known RNA molecule is not present in cancer cells after all

A so-called circular RNA molecule, which is thought to be carcinogenic, is not present in cancer cells after all. A Danish research team has published the new results in Nature Communications.

Organoid-3 ©Agnieszka Rybak Wolf, MDCLifeTime

2020.09.09 | Research

International initiative seeks to improve healthcare through cell-based medicine

The research initiative LifeTime represents more than 50 European universities, including Aarhus University. A new Perspective article in Nature, co-authored by Jørgen Kjems from iNANO and MBG, outlines LifeTime's vision of how to revolutionize healthcare through personalised, cell-based interceptive medicine.