
We have established a method for co-

transcriptional incorporation of a wide variety of 

chemically modified nucleobases that is fully 

compatible with in vitro selection strategies.
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GalNAc-modified RNAs selective to the asialoglycoprotein

receptor (ASGPR1) in hepatic cells show potential to be 

used for liver therapy as drug delivery vector.

We have developed a 2´-fluoro 

modified RNA aptamer that is 

serum-stable and binds strongly 

to SARS-CoV2 spike protein and 

can block viral entry. Current efforts 

are focused on targeting other 

viruses (influenza , adenovirus) 

with sugar modified aptamers.

We use RNA to develop a new class of hybrid 

biomolecules for applications in synthetic biology 

and biomedicine. Chemically modified RNA 

displays novel features:

 Improved binding properties with high 

specificity for cell/protein targeting.

 Enhanced reactivity for catalysis (RNAzymes)

 Stable against degradation

 Enhanced cell uptake and pharmacokinetics

 Compatible with in vitro evolution

 Novel RNAzymes to control gene expression.

 Chemically enhanced mRNA for efficient uptake 

and prolonged protein translation.

 Expansion of RNA alphabet and decoding via 

nanopore sequencing.

 Designing functional RNA:protein biohybrid

nanosystems.

 Nanoinjection of functional non-coding RNAs 

using synthetic nanopores.
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Figure 2. A) Scheme of the in vitro selection to develop new chemically modified RNA catalysts.

B) Affinity column separation and screening of RNAs with faster catalytic rates. C) Direct RNAseq

using nanopores for chemically modified nucleobase detection.
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