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Background: Plant-microbe interactions are key to evolution and survival in diverse ecosystems. Healthy plants are colonised by a great diversity of
microorganisms, referred to as the plant microbiota, which have profound effects on plant growth and fitness. Plants sense the microbes through a variety of
membrane-localised receptors. Recognition at the plasma membrane level initiates a specific response In the plant host that impacts the structures and functions
of the associative microbial communities. Identifying and understanding the mechanisms underlying these interactions will enable us to improve plant health and
crop Yyields in a sustainable manner, while reducing the carbon footprint due to intensive crop growth systems based on energetically and climate expensive
chemicals.

Root microbiome

Mixed community matrix
LjAt-SC
32 strains
16 families ’

Lj-derived 'S

Rationale: The molecular programs that control root infection by commensals I
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Objectives:
* |dentify a core microbiome efficient for endophytic colonisation.
* |dentify plant and bacterial functions important for root microbiota assembly.

CPCoA 2 (23.78%)
aouepunge aAne|a. perebalbby

Aggregated relative abundance

) ® "'3 o.o. )

(1]

Methods

» Plant physiology and microbiology techniques T

* 16S rRNA and shotgun metagenomics

* DNA library preparation for lllumina sequencing
Bioinformatic analyses of bacterial communities ity - 2 L
Programming and automation of biological analyses N O Gl
Bacterial gene enrichment at community level \ Wippel, K. Tao, K., Niu, Y. et a (2021). Nature Microbiology, 6, 1150-1162.
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Rationale: The underlying bacterial components that contribute to host preference N @ % o
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exploration Iinto the genetic factors of plant-associated microorganisms that pene frene® frenet
contribute to colonisation and survival in different plant compartments,

Create transposon library Pool high-density Grow transposon library Attach sequencing adaptors
transposon mutant library under desired conditions and amplify transposon
junctions from library DNA

Objectives:
* |dentify microbial genes important for plant colonisation.
» |dentify microbial genes that control the metabolic and signalling networks.
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»  General microbiology techniques o= o Low saturation
« Bacterial genome analyses, bioinformatics, and - v *'
/n sifico construct design
PCR, plasmid cloning, Sanger sequencing analysis %"
Directed mutagenesis of bacteria (gene KOs) Map and count reads for dentifyloci required for growth o5 s0 T a0

=_= each insertion site under different conditions

Transposon insertion sequencing (Tn-seq & Barseq) Squn - Eber
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Modified from Chao, M. C., Abel, S., Davis, B. M., & Waldor, M. K. (2016). Nature Reviews Microbiology, 14(2), 119-128.

Plant receptors and signalling ; :
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Background: Legumes recognise and respond specifically to symbionts and "Gt e =
pathogens that produce chitin-based ligands. LysM receptor — KiNASES e e
recognise different microbial carbohydrates and initiate immune or symbiotic - I
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symbiosis, while CERKé perceives chitin and activates defence mechanisms.
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» |dentify distinct motifs in LysM receptors controlling symbiosis or immune 1
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signalling. B 2 7 08 0T 0D 0 e
: : : B ki, Z., Gysel, K., H , S.B. /.{2020). Sci , 369, 663-670.
Understand how dynamics of signalling from LysM receptors lead to ook #©yseh K. Hansen 8B erai{2020) Science
Ssymbiosis or immunity.

Methods: P

* Golden Gate design and cloning in £ coli e %
« PCR, Sanger sequencing analysis I W = §
» Transformation of model plants, phenotypical analysis | '@ % o
» Microscopy (bright field, fluorescent, confocal) & .

« Signalling in single root cells (protoplasts) o
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