Sadegh Nabavi has been awarded one of the prestigious ERC Starting Grants. (Photo: DANDRITE)
Figure 1. Sadegh Nabavi will use optogenetics to modify memory strength at the synaptic level to study why only some synapses, and hence memories, become permanent (Figure: Sadegh Nabavi)
Figure 2. a) Fear conditioning with optogenetics. Diagram of rat’s fear memory circuit receiving optogenetically driven input stimulation (laser) paired with a shock (left). Animal is tested one day later (right) by optical activation of the input (blue). Time plot shows normalized number of lever presses (1 min bins) to a previously learned cued lever-press task. b) LTD inactivates memory. In vivo field response in lateral amygdala to single optical stimulus (left) before and after LTD induction (1Hz). Animal is tested one day later (right). c) LTP reactivates memory. Same as b) except animal receives an LTP protocol (100Hz). (Figure: Sadegh Nabavi, published in Nature (Nabavi et al., 2014))

2015.11.20 | Grant

ERC Starting Grant for research in memory formation and consolidation

MBG-DANDRITE Group Leader Sadegh Nabavi is awarded an ERC Starting Grant of EUR 1.5 million for research into memory formation to answer the fundamental questions on why some memories last and some are soon lost.

2015.11.03 | Research

Breeding confident mink has side benefits

When you select for confident mink in the breeding programme, you also get a better fur quality according to a study from Aarhus University. The study also shows that behaviour has a higher heritability than previously thought.

Most cells in the body sit in one place – the environment and the neighbours are well known, and the blood provides a constant supply of nutrients. The sperm, on the other hand, must go on a dangerous journey from the testicle to the fallopian tube, where it is challenged by significant fluctuations in temperature, pH and salt composition. Photo: Colourbox (Kiyoshi Takahase Segundo)

2015.10.29 | Research

Unique pump in sperm cells makes a difficult journey possible

A prerequisite for the sperm cell's difficult journey from the testicle to the fallopian tube is its unique sodium-potassium pump. New studies of the unique pump show how it differs from the sodium-potassium pumps in the rest of the body, and gives hints on why sperm cells have developed their own pump.

The part of the research team that is located at the Department of Molecular Biology and Genetics (from left): Rune Hartmann, Line Lykke Andersen and Hans Henrik Gad. Line, who is first author, has just defended her Master's thesis. Photo: Lisbeth Heilesen, Aarhus University.

2015.10.20 | Research

Cause of viral infection of the brain mapped out

Researchers have discovered a defect in the immune system, which causes some people with herpes virus to develop a life-threatening inflammation of the brain. This immunodeficiency is likely the same for certain types of meningitis and also the reason why some people become seriously ill due to influenza.

The field of agricultural sciences encompasses a wide range of subjects related to how humans use and develop natural resources for their benefit. Photo: Anders Trærup

2015.10.13 | Research

Aarhus University’s agricultural science research among world elite

With an impressive ninth place Aarhus University is ranked among the world’s top ten universities with regard to agricultural sciences which includes researchers from MBG from Foulum og Flakkebjerg.

A total of three staff from MBG were awarded a grant from the Danish Council for Independent Research.
Henriette Elisabeth Autzen
Frederik Teilfeldt Hansen
Ewa Terczyńska-Dyla

2015.09.28 | Grant

Three postdoc grants to the Department of Molecular Biology and Genetics

Three researchers from MBG - all from the Section of Structural Biology - have been awarded a grant from the Danish Council for Independent Research. The grants are intended to give young researchers the best conditions to carry out significant research at a high international level.

Poul Nissen

2015.09.10 | Awards

Poul Nissen awarded the international Gregori Aminoff Prize 2016

The Royal Swedish Academy of Sciences has decided to award the Gregori Aminoff Prize in crystallography 2016 to Professor Poul Nissen, Aarhus University. Poul Nissen is the first Dane to receive the Aminoff Prize.

During DNA replication, single-stranded breaks in the genome will be converted to double strand breaks. Such breaks are normally repaired by a very imprecise mechanism, which may incorporate mistakes in the genome (here shown as red stretches of DNA). To avoid too many mutations, a nuclease called Mus81 acts at these positions to decrease the distance, where the imprecise mechanism is used (Photo: Colourbox; drawing: Lotte Bjergbæk)

2015.08.24 | Research

Identifying mechanism that repairs damage to our genome

One of the most common forms of damage to our genome is a break in one of our DNA strands. Researchers have now found a mechanism that can repair these breaks naturally and thereby help to suppress the development of cancer.

Figure A. Methyl phosphate. B. Methyl phosphonate. Phosphonate compounds are characterised by a direct link between carbon (C) and phosphorus (P), marked with red. C. The molecular structure of the C-P lyase complex (Figure: Ditlev E. Brodersen, Aarhus University)
The Danish research team behind the article in <em>Nature</em>; from left: Bjarne Jochimsen, Lan Bich Van, Morten Kjeldgaard, Paulina Seweryn, Bjarne Hove-Jensen and Ditlev E. Brodersen (Photo: Lisbeth Heilesen, Aarhus University)
The British research team: Lori A. Passmore and Christopher J. Russo (Photo: Martin Phelps, Medical Research Council, Cambridge)

2015.08.17 | Research

Bacteria’s secret weapon against pesticides and antibiotics revealed

Bacteria exhibit extreme adaptability, which makes them capable of surviving in the most inhospitable conditions. New research results produced by Danish and British researchers now reveal the molecular details behind one of the secret weapons used by bacteria in their battle to survive under very nutrient-poor and even toxic conditions.

<strong>Uninfected and infected root nodules</strong>. Uninfected root nodule induced by <em>M. loti</em> bacteria synthesising incompatible exopolysaccharides (left) and infected nitrogen fixing root nodule induced by <em>M. loti</em> bacteria synthesising compatible exopolysaccharides (right). (Figure: Yasuyuki Kawaharada, Aarhus University).
The research team behind the new research results in <em>Nature</em>from Denmark, New Zealand and the USA. (Photo: Lisbeth Heilesen, Aarhus University).

2015.07.08 | Research

Researchers discover how bacteria sweet-talk their way into plants

An international team of researchers has discovered how legumes are able to tell helpful and harmful invading bacteria apart. The research has implications for improving the understanding of how other plants, animals and humans interact with bacteria in their environment and defend themselves against hostile infections. These findings can have…

Nuclear mRNA with a poly(A) tail is normally bound by Nab2, exported to the cytoplasm for translation into proteins and finally turned-over as shown on the left. In the absence of Nab2, the RNA is unprotected and degraded already in the nucleus by exoribonucleases Rrp6 and Dis3. Figure: Manfred Schmid.

2015.06.26 | Research

Surprising new mechanism for gene expression regulation

A new important role for a protein connected to the proper function of neurons has been discovered by a research group from MBG, Aarhus University. The studies shed new light on gene expression regulation and may ultimately lead to an understanding of how neurological defects occur when this protein is mutated.

The figure shows nodules colonised by the symbiont (in green) and by the endophyte (red). Both symbionts and endophytes get access into the nodule via infection threads induced by the symbiont. The endophyte colonises efficiently intra and intercellular spaces of the nodule.

2015.06.22 | Research

Legumes control infection of nodules by both symbiotic and endophytic bacteria

New research results show that legume plants selectively regulate access and accommodation of both symbiotic and endophytic bacteria inside root nodule. This provides a solid basis and platform for identification and selection of beneficial endophytic bacteria and highly efficient nitrogen-fixing rhizobia to be used as biofertilisers in…

Bjørn Panyella Pedersen (Photo: Lisbeth Heilesen)
Four recipients of ST Awards 2015 together with the dean. Pictured from left are Peter Frank Tehrani (ST Education Award 2015), Dean Niels Chr. Nielsen, Inga Jensen Mumm (ST TAP Award 2015), Esben Auken (ST Industrial Collaboration Award 2015) and Bjørn Panyella Pedersen (ST Science Award 2015). Mie Birkbak (ST Talent Award 2015) was on a research period abroad. (Photo: Peter Gammelby, ST Communication).

2015.06.22 | Awards

Bjørn Panyella Pedersen receives ST Science Award 2015

Every year in June, ST selects six people to receive an award in recognition of their great efforts – generally and during the year that has passed – and Bjørn Panyella Pedersen from the Department of Molecular Biology and Genetics receives ST Science Award.

2015.06.10 | Grant

Nine researchers from MBG receive grants from the Danish Council for Independent Research

Rune Hartmann, Gregers Rom Andersen, Claus Oxvig, Daniel Otzen, Lene Niemann Nejsum, Esben Skipper Sørensen, Jørgen Kjems and Ebbe Sloth Andersen have all received a large grant from the Danish Council for Independent Research.

The image shows which parts of the GlpG protein are the first to fold in the transition state (TS). The greener it is, the more coloured it gets. White shows that there is no structure in the TS, while red shows that this part of the protein has ‘overfolded’. Left: the actual 3D structure of the protein. Right: here the individual amino acid residues are shown in a model overview of the protein, where all 6 transmembrane helices (TM1–6) are visible, as well as the two helices (H1–2) and the loop, which is sticking out of the cell membrane.

2015.06.09 | Research

All folding is good when it gets off to a good start

Aarhus researchers are behind the most detailed description of how membrane protein folds. This provides new knowledge about the wonderful world of membrane proteins.

Showing results 1 to 15 of 275

1 2 3 4 5 6 7 8 9 10 Next

Comments on content: 
Revised 2015.11.20

How to find the Department of Molecular Biology and Genetics

Show detailed map


The Department of Molecular Biology and Genetics (MBG)
is located at five different addresses:

  • The Science Park - Gustav Wieds Vej 10, 8000 Aarhus C, Denmark
  • Biokæden (Campus) - C.F. Møllers Allé 3, 8000 Aarhus C, Denmark
  • iNANO - Gustav Wieds Vej 14, 8000 Aarhus C, Denmark
  • Foulum - Blichers Allé 20, 8830 Tjele, Denmark
  • Flakkebjerg - Forsøgsvej 1, 4200 Slagelse, Denmark
  • MBG's teaching labs - C.F. Møllers Allé 4, 8000 Aarhus C, Denmark

More information on how to find these places and who works where

Contact information

at the Department of Molecular Biology and Genetics

Tel.: +45 8715 0000
CVR-no.: 31119103
VAT ("moms") number: 31 11 91 03
EAN-no. 5798000419964
"Stedkode" (departmental id number): 2802

  • Contacts at the faculty (ST) - building service, IT, accounting, puchasing, student administration

Internal information

For staff and students at
the Department of Molecular Biology and Genetics

Aarhus University
Nordre Ringgade 1
DK-8000 Aarhus C

Tel: +45 8715 0000
Fax: +45 8715 0201

CVR no: 31119103

AU on social media: